Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

نویسندگان

  • Sangwoo Kim
  • Seongdae Choi
  • Eunho Oh
  • Junghwan Byun
  • Hyunjong Kim
  • Byeongmoon Lee
  • Seunghwan Lee
  • Yongtaek Hong
چکیده

A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson's ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson's ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly conductive, printable and stretchable composite films of carbon nanotubes and silver.

Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid compos...

متن کامل

A New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells

A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...

متن کامل

Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional f...

متن کامل

Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT:PSS coating.

We have manufactured a highly conductive and stretchable composite by backfilling the 3D graphene-PEDOT:PSS skeleton with poly(dimethylsiloxane) (PDMS). The electrical conductivity of our product can reach 24 S cm(-1) with only 1.5 wt% graphene and 1.5 wt% PEDOT:PSS loading, and its resistance increased only 35% when stretched to 80% strain.

متن کامل

Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors.

The realization of levels of stretchability that extend beyond intrinsic limits of bulk materials is of great importance to stretchable electronics. Here we report large-area, three-dimensional nano-architectures that achieve this outcome in materials that offer both insulating and conductive properties. For the elastomer poly(dimethylsiloxane), such geometries enhance the stretchability and fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016